III Obstruction Theory and Classifying Bundles
(and Characteristic classes)
A. Obstruction Theory

We want to study sections of a fiber bundle

we assume: A) M is a CW complex (always true for manifolds)
B) F is n-simple for all n
ie. action of $\pi_{1}\left(F, x_{0}\right)$ on $\pi_{n}\left(F, x_{0}\right)$ (is trivial
recall, from Th ${ }^{\underline{M}}$ I. 13 action is

$[r] \in \pi_{1}(F)[f] 6 \pi_{n}(F)$
exercise:

1) H-spaces (so Lie groups, loop spaces..) are n-simple
2) $\pi_{1}\left(F, x_{0}\right)$ is abelian if 1 -simple
3) $\pi_{n}\left(F, x_{0}\right) \cong\left[S^{n}, F\right]$ homotopy classes Th $=$ I. 13 of un based maps
and a not so important assumption
c) action of $\pi_{1}\left(M, \rho\left(x_{0}\right)\right.$ on $\pi_{n}\left(F, x_{0}\right)$ I is trivial
 gives a map $\tilde{\gamma}: F \times[0,1] \rightarrow E$ so $\tilde{\gamma}(x, 1): p_{11}^{-1}(x) \rightarrow p_{11}^{-1}(x)$ so gives homo. $\tilde{\gamma}(x, 1)_{k}: \pi_{n}(F) \circlearrowleft$
exencuse: this imples $\pi_{n}\left(p^{-1}(x)\right)$ is a fixed group in dependent of $x \in M$
(we can get around this by using "whomology with local coefficients")

Denote the n-skeleton of M by $M^{(n)}$ assume we have a section $s_{k}: M^{(k)} \rightarrow E$ we define a cohomology class cw-cochains

$$
\left.\tilde{\sigma}\left(s_{k}\right) \in C^{k+1}(\mu) ; \pi_{k}(F)\right)
$$

as follows
recall $\tau \in C^{k+1}\left(\mu_{i} \pi_{k}(F)\right)$ is a homomorphism

$$
\tau: C_{k+1}(M) \rightarrow \mathbb{T}_{k}(F)
$$

and $C_{n+1}(M)$ is freely generated by
the (kt1)-cells of $M: e_{1}^{k+1} \cdots e_{l}^{k+1}$ recall, $M^{(h+1)}=M^{(h)} \cup e_{1}^{k+1} \cup \ldots v e_{l}^{k+1} / \sim$
where $e_{i}^{k+1}=D^{k+1}$ and $a_{i}: \partial e_{i}^{k+1} \rightarrow M^{(k)}$ now \sim above is gluing $e_{i}^{k * 1}$ to $\mu^{(k)}$ using a_{2} and we have an "inclusion"
$I_{i}: e_{i}^{k+1} \rightarrow M$
since e_{i}^{k+1} is contractible, Cor II. 3 says

$$
\begin{aligned}
I_{2}^{*} E & \cong D^{k+1} \times F \\
L_{1}^{k+1} & =D^{k+1}
\end{aligned}
$$

s_{k} pulls back to a section of $I_{2}^{*} \in$ along ∂e_{2}^{k+1} let $p_{2}: I_{1}^{*} E \rightarrow F$ be projection
then $P_{2} \circ s_{k}: S_{11}^{k} \longrightarrow F$ gives an element of $\pi_{k}(F)$ ∂e_{i}^{k+1} (here we use B))
note: we also use C) so that all homotopy groups of all fibers are canonically identified
define $\tilde{\sigma}\left(S_{k}\right)\left(e_{i}^{k+1}\right)=\left[\rho_{2} \circ S_{k}\right]$
so $\tilde{\sigma}\left(s_{k}\right) \in C^{k+1}\left(M, \pi_{k}(F)\right)$
Remark: alternate def ${ }^{n} I_{i}: \partial e_{1}^{h * 1} \rightarrow M$ is null-homotopic (via I_{i} on D^{k+1}) and $\left.s_{k}\right|_{\partial e_{i}^{k+1}}$ is a lift of the start of the homotopy. Homotopy lifting gives us a mop $\tilde{H}: S^{k} \times[0,1] \rightarrow E$ and in $\left.(\tilde{H}(, 1))\right) \subset p^{-1}(\tilde{H}(x, 1))$
exercise:

1) $\tilde{\sigma}\left(S_{h}\right)$ is invariant under homotopies of s_{k}
2) $\tilde{\sigma}\left(S_{k}\right)=0 \Leftrightarrow S_{k}$ extends oven $M^{(k+1)}$
lemon 1:

$$
\delta \tilde{\sigma}\left(s_{k}\right)=0
$$

for the proof recall in CW-homology

$$
\partial^{C W}: C_{k+1}(M) \rightarrow C_{k}(M)
$$

is defined as follows.
for each h-cell e_{i}^{k+1} consider

$$
\partial\left(e_{i}^{n+1}\right)=\sum_{j=1}^{\stackrel{\downarrow}{m}}\left(\operatorname{deg} g_{i j}\right)\left[e_{j}^{k}\right]
$$

exercise: we can homotop a_{i} so that there are open disks $D_{n}^{k} \subset s^{k}=\partial e_{i}^{k+1}$ so that
D_{n}^{k} maps homeomorphically onto intercom of some k-cell and $a_{i}\left(\pm \partial D_{n}^{k}\right)$ is the attaching mop of that k-cell, depending on D_{n}^{k} or ${ }^{n}$ pres. and $a_{i}\left(S^{k}-U D_{n}^{k}\right) \subset M^{(k-1)}$ or reversing
Hint: homotop a_{i} so smooth on $a_{2}^{-1}(\operatorname{int}(k$-cells)) now take regular value in centra of each k-cell (see proof of cellular
proof: recall $\delta\left(\tilde{\sigma}\left(S_{n}\right)\right): C_{k+2}(M) \rightarrow \pi_{k}(F)$

$$
e^{e_{k+2}} \longmapsto \tilde{\sigma}\left(S_{k}\right)\left(\partial e^{k+2}\right)
$$

let $a: \partial e^{k+2} \rightarrow M^{(n+1)}$ be the attaching mop and $I: e^{k+2} \rightarrow M$ the inclusion homotop a as in exercise above now $\delta \tilde{\sigma}\left(s_{n}\right)\left(e^{k+2}\right)=\tilde{\sigma}\left(s_{k}\right)\left(\sum d_{j}\left[e_{j}^{k+1}\right]\right)$ as above $I^{*} E \cong e^{k+2} \times F$

from exercise
and s_{k} gives a section above $a\left(\partial e^{n+2}-U D_{n}^{k+1}\right)$ and $\left.a\right|_{\partial D_{n}^{n+1}}$ is the attaching mop for a $(h+1)$-cell, say e_{i}^{k+1}
so can use $p_{2}^{0} a_{ \pm \partial D_{n}^{n+2}}$ to define $\tilde{o}\left(s_{n}\right)\left(e_{i}^{k+1}\right)$
\therefore the mops used in the definition of

$$
\sum d_{j} \tilde{\sigma}\left(s_{h}\right)\left(e_{j}^{k * 1}\right)
$$

can be extended oren $\partial e^{k+2}-U D_{n}^{h+1}$
exercise: show this means $\sum d_{j} \tilde{\sigma}\left(s_{h}\right)\left(e_{j}^{k t 1}\right)$ is O in $\pi_{k}(F)$

Hent: first case is $f: \partial D^{k+1} \rightarrow F$ is null-homotopic $\Leftrightarrow f$ extends over D^{k+1}
So $\delta \tilde{\sigma}\left(s_{n}\right)=0$
now suppose we hove 2 sections S_{k} and S_{k}^{\prime} oren $M^{(k)}$ that agree on $M^{(k-1)}$
then we define a difference class in $C^{k}\left(M, \pi_{n}(F)\right)$

$$
D\left(S_{k}, S_{n}^{\prime}\right): C_{k}(M) \rightarrow \pi_{k}(F)
$$

as follows let $I_{i}: e_{1}^{k} \rightarrow M$ be the inclusion mop

$$
\begin{gathered}
I_{2}^{*} E \cong e_{2}^{k} \times F \\
\searrow \nless \\
e_{i}^{k}
\end{gathered}
$$

now $\left.S_{k}\right|_{\partial e_{i}^{k}}=\left.s_{k}^{\prime}\right|_{\partial e_{i}^{k}} \quad$ so we get

$$
\left.\rho_{2} 0^{\prime \prime} s_{k}\right|_{e_{i}^{k}}-\left.S_{h}^{\prime}\right|_{e_{i}^{k}} ^{\prime \prime}: S^{n} \rightarrow F
$$

define $\left.D\left(s_{h}, s_{h}^{\prime}\right)\left(\left[e_{2}^{k}\right]\right)=\left[p_{2} \circ s_{h}\right)-\left.s_{h}^{\prime}\right|_{\partial}\right] \in \pi_{n}(F)$
lemma 2:

1) $\delta\left(D\left(S_{k}, S_{k}^{\prime}\right)\right)=\tilde{\sigma}\left(S_{k}\right)-\tilde{\sigma}\left(S_{k}^{\prime}\right)$
2) given S_{k} and any $h \in C^{k}\left(M ; \pi_{k}(F)\right)$

$$
\exists s_{k}^{\prime} \text { st. } \quad D\left(s_{k}, S_{k}^{\prime}\right)=h
$$

Proof: 1) is similar to proof of lemma 1 exencsié: prove 1)
2) let S_{k} be any section on $M^{(k)}$ for a fixed k-cell e^{k} let

$$
h: C_{k}(M) \rightarrow \pi_{k}(F)
$$

be $h\left(e^{k}\right)=[g] \in \pi_{k}(F)$
and h of other k-cells be 0
(as e^{k} ranges oven all cells such h will generate $C_{h}(M)$ so if we prove the result for this h we will be done)
let I: $e^{k} \rightarrow M$ be "inclusion" as above $I^{*} E=e^{k} \times F$

$$
\downarrow e^{k}
$$

now choose a disk $D^{k} \operatorname{cin}$ it e^{k} and homotop

$$
s_{k} \text { on } e^{k} \text { so } p \circ s^{k}\left(D^{k}\right)=x_{0} \in F
$$

let $S_{k}^{\prime}=S_{k}$ on $M^{(k)}-D^{k}$ and on D^{k}
let it represent $-g \in \pi_{k}(F)$
(well p_{z} o s_{k}^{\prime} represents - g)
clearly $D\left(S_{k}, S_{k}^{\prime}\right)=h$
the lemmas and discussion above prove
Th ${ }^{m} 3:$

and a section $S_{k}: M^{(k)} \rightarrow E$, then

$$
\begin{gathered}
s_{k} \mid M^{(k-1)} \text { extends to } M^{(k+1)} \\
\Leftrightarrow \\
\sigma\left(s_{k}\right)=\left[\tilde{\sigma}\left(s_{k}\right)\right]=0 \in H^{k+1}\left(M_{;} \pi_{k}(F)\right)
\end{gathered}
$$

So we hove an obstruction to extending sections!
remark: if $\pi_{k}(F)=0$ for $k<\operatorname{dim} M$ then the a above shows \exists a section of $F \rightarrow \underset{\sim}{E}$ in particular, as noted above a bundle with contractible fibers always has a section!
note: $\sigma\left(S_{k}\right)$ depends on $\left.S_{k}\right|_{M}(k-1)$ ne. it is not just about whether there is a section of E oven M^{k+1} but whether our choice of section of $M^{(k)}$ (when restricted
to $\left.M^{(k-1)}\right)$ extends to $M^{(k+1)}$
but the "first obstruction" is independent of any choices and is "natural"
Th쓴: given $F \rightarrow E$
$\underset{M}{E}$ satisfying A) - c) above
if $\pi_{k}(F)=0$ for $k<n$, then \exists a section
$S_{n}: M^{(n)} \rightarrow E$ and the obstruction $\sigma\left(S_{1}\right)$ does not depend on S_{n} (we II-definied independent of choices) denote $\sigma\left(s_{n}\right)$ by $\gamma^{n+1}(\epsilon)$ (called primary obstruction)
and if $f: N \rightarrow M$ is a map, then natal

$$
\gamma^{n+1}\left(f^{*} E\right)=f^{*}\left(\gamma^{n+1}(E)\right)
$$

γ^{n+1} is called a characteristic class
Proof: the discussion above says s_{n} exists (since all obstructions vanish)
you can develope an obstruction theory to homotoping one section to another given s and s^{\prime} with $s / M_{M^{(k-1)}}=S^{\prime} / M_{(k-1)}$ then $s /_{M}(k)$ is homotopic to $s^{\prime} /_{M^{(h)}}$
\Leftrightarrow
$\sigma\left(S, s^{\prime}\right) \in H^{k}\left(M ; \pi_{k}(F)\right)$ vanishes
so there is a unique section of E oven $M^{(n-1)}$
$\therefore \sigma\left(S_{n}\right)$ is well-defined
for naturallity suppose $f: N \rightarrow M$ is a cellular map (we can homotop to make it so) now a section s of $E \rightarrow M$ gives a section $f^{*}(s)$ of $f^{*}(E)$ exeruse: check this for any $\Phi:\left(D^{n+1}, \partial D^{n+1}\right) \rightarrow\left(M^{(n+1)}, M^{(n)}\right)$ we see

$$
\pi_{n+1}\left(M_{1}^{(n+1)} M^{(n))}\right) \rightarrow \pi_{n+1}\left(N^{(n+1)}, N^{(n)}\right) \rightarrow \pi_{n}(F)
$$

$[\Phi] \stackrel{f_{*}}{\longmapsto}[f \circ \Phi] \longmapsto\left[\left.p_{2} \circ S \circ f \circ \Phi\right|_{\partial D^{n+1}}\right]$
is essentially both $\sigma\left(f^{*} s\right)(\Phi)$ and

$$
\left(f^{*} \sigma(s)\right)(\Phi)
$$

now $\pi_{n+1}\left(M^{(n+1)}, M^{(n)}\right) \cong H_{n+1}\left(M^{(n+1)}, M^{(n)}\right) \cong C_{n+1}^{c w}(\mu)$ and similaly for N so the cocycle $\gamma^{n+1}\left(f^{*} E\right)=f^{*} \gamma^{n+1}(E)$
example:
recall a vector bundle

has a k-frame \Leftrightarrow structure group reduces to $G<(n-k)$
or first put a metric on E so it has str. group $O(n)$ then
E has an orthonormal k-frame \Leftrightarrow
structure group reduces to $O(n-k)$ in tums of principal bundles, let $7(E)$ be the orthonormal frame bundle (re. the principal $O(n)$ bundle associated to E)
now E has an orthonormal k-frame
\Leftrightarrow lemma I. 12
$7(E) / O(n-h)$ has a section
the fibers of $\mathcal{F}(E) / O(n-k)$ are $O(n) / O(n-k)=V_{n, k}$ recall from Cor II. II

$$
\pi_{i}\left(V_{n, k}\right) \cong \begin{cases}0 & 1<n-k \\ \mathbb{Z} & 1=n-k \text { even or } k=1 \\ \mathbb{K} / 2 & 1=n-k \text { odd }\end{cases}
$$

unfortunately $\pi_{1}(M)$ does not necissarily act trivially on $\pi_{n-k}\left(V_{n, n}\right)$ if it is \mathbb{Z} but if we take the mod 2 reduction it will (any action on $\mathbb{Z} / 2$ is the identity) so we have a primary obstruction to a k-frame oven the $n-k+1$ skeleton

$$
\gamma_{n-n+1}(E) \in H^{n-k+1}\left(M ; \pi_{n-k}\left(V_{n, n}\right) \bmod 2\right)
$$

set $\omega_{l}(E)=\gamma_{l}(E) \in H^{l}(\mu ; \mathbb{Z}(2)$
this is the $e^{\text {th }}$ Steifel-Whitney class of E
when l even (so $n-k$ odd where $l=n-k+1$) $w_{l}(E)$ is the primary obstruction to \exists of an $(n-l+1)$ frame on $M^{(l-1)}$ that extends oven $M^{(l)}$ in general it is a "reduction" of this
Fact: (Steenrod) the w_{i} determine all the princery obstructions
exercise:
Given

1) $w_{1}(E)=0 \Leftrightarrow \exists$ a n-frame over $M^{(0)}$
that extends over $M^{(1)}$
\Leftrightarrow E orientable
2) If E orientable, then
$w_{2}(E)=0 \Leftrightarrow J$ an $(n-1)$-frame over $M^{(1)}$
that extends oven $M^{(2)}$
$\Leftrightarrow \exists$ an n-from oven $\mu^{(1)}$
\rightarrow that extends over $M^{(2)}$
this is called a spin
structure
example:
if $\xrightarrow{\mathbb{R}^{n} \rightarrow E} \begin{aligned} & E \\ & M\end{aligned}$ is an oriented bundle
then $\pi_{1}(M)$ acts trivially on $\pi_{n-1}\left(\nu_{n .1}\right) \cong \mathbb{Z}$
exenasé: Check this
So we get a primary obstruction

$$
e(E) \in H^{n}(M ; 甘)
$$

to the existence of a non-zero section $e(E)$ is called the Euler class
exencośe:

1) if $\operatorname{si} M \rightarrow E$ is any section and M a monifold then we can homotop s so it is transrase to the zero section $z \subset E$ and Poincaré Dual

$$
e(E)=P \cdot D \cdot\left[S^{-1}(Z)\right]
$$

2)

$$
\begin{gathered}
e(T M)([M]) \\
\begin{array}{c}
\text { fund mental } \\
\text { class of } M
\end{array} \\
\text { enaracteristio }
\end{gathered}
$$

example:
let $\mathbb{C}^{n} \rightarrow E$
$\xrightarrow[M]{t}$ be a vector bundle with structure group $G L(n ; \mathbb{C})$ this is a "Complex bundle" (from above can assume str. gp. Un)) so the frame bundle $F(E)$ can betaken to be a principal $U(n)$-bundle as in the real case, $\mathcal{F}(E)$ will hare a complex k-frame
$-f(E) / u(n-k)$ has a section
(this is a $U(n) / U(n-k)=V_{n, k}(\mathbb{C})$ bundle)
from Cor II. II

$$
\pi_{1}\left(V_{n, k}(\mathbb{C})\right) \cong \begin{cases}0 & 2 \leq 2(n-k) \\ \mathbb{E} & 2=2(n-k)+1\end{cases}
$$

exencose: $\pi_{1}(M)$ acts trivially on $\pi_{2(n-k)+1}\left(V_{n, k}(\mathbb{C})\right)$ where we think of $V_{n, k}(\mathbb{G})$ as the fiber of $F(E)$, $U(n-k)$
thus the primary obstruction to a complex k-frame is

$$
\gamma^{2(n-k)+2} \in H^{2(n-k)+2}(M ; \underbrace{\mathbb{Z}_{2(n-k)+1}\left(V_{n, k}(\mathbb{C})\right)}_{z})
$$

we define $C_{k}(E)=\gamma^{2 k}(E) \in H^{2 h}(\mu ; \mathbb{Z})$
this is the $k^{t h}$ Chen class of E clearly $c_{k}(E)$ is the obstruction to a complex $(n-k+1)$ frame on $M(k-1)$
that extends to $\mu^{(2 k)}$
exencise: if E is a complex \mathbb{C}^{n}-bundle oven M

1) $C_{n}(E)=e(E)$
2) $w_{\text {ziti }}(E)=0(\Rightarrow$ complex bundles are oriented)
3) $w_{2 i}(E)=C_{2}(E) \bmod 2$
4) $C_{1}(E)=0 \Leftrightarrow$ structure group of E reduces to $S U(n)$
"complex orientation"
5) If \bar{E} is E with "conjugate complex structure" ie. for $z \in \mathbb{C}$ multiply by \bar{z} then $c_{i}(E)=(-1)^{i} c(E)$
Hint: easy for $C_{n}(E)$, reduce to this see Milnor - Stasheff
there is one more "standard" characteristic class given a real bundle $\begin{aligned} \mathbb{R}^{n} \rightarrow & E \\ & \underset{M}{E}\end{aligned}$
then $E \otimes_{\mathbb{R}} \mathbb{C}$ is a complex vector bundle the ${ }^{\text {th }}$ Pontrjagin class of E is

$$
p_{i}(E)=(-1)^{i} c_{2 i}(E \otimes \mathbb{C}) \in H^{4 i}(\mu ; z)
$$

exercise:

1) Show $E \otimes \mathbb{C}$ and $\overline{E \otimes \mathbb{C}}$ are isomorphic use this to show $C_{2 i+1}(E \otimes \mathbb{C})$ is 2 -torsion
2) if E is an oriented $\mathbb{R}^{2 n}$-bundle then $P_{n}(E)=e(E) \cup e(E)$
3) If E is a complex bundle and E^{R} denotes the underlying real bundle then $E^{\mathbb{R}} \otimes \mathbb{C} \cong E \otimes \bar{E}$
4) if E is a \mathbb{C}^{n}-bundle then

$$
\begin{gathered}
1-p_{1}(E)+p_{2}(E) \ldots \pm p_{n}(E)=\left(1+C_{1}(E)+\ldots+C_{n}(E)\right) v\left(1-C_{1}(E) \ldots \pm C_{n}(E)\right) \\
\text { egg. } p_{1}(E)=C_{1}(E) \cup C_{1}(E)-2 C_{2}(E)
\end{gathered}
$$

Characthistic classes, in general, do not determine a bundle, lout we do have
I) Complex line bundles are determined by c_{1} and any $\alpha \in H^{2}(M)$ is c_{1} of some \mathbb{C}-bundle 2.e. $\{\mathbb{C}$-bundles oven $M\} \stackrel{1-1}{\longleftrightarrow} H^{2}(M)$
II) \mathbb{C}^{2}-bundles are determined by c_{1} and c_{2}
and $\forall(a, \beta) \in H^{2}(M) \times H^{4}(M), \exists a$

$$
\mathbb{C}^{2} \text {-bundle } E \text { st. } c_{1}(E)=\alpha_{1} c_{2}(E)=\beta
$$

III) $50(3)$-bundles are isomorphic

$$
w_{z}, p_{1} \fallingdotseq_{\text {agree }}
$$

IV) So(4)-bundles are isomorplici
\Leftrightarrow
$w_{2} p_{1}$ e agree
exercise: prove the above
I) "easy" II) "easyish"
III), II) harder
B. Characteristic classes
another way to think of Steifel-Whitney classes
Th ${ }^{m}$ 5:
Ba unique function

$$
w_{i}: \operatorname{Vect}(\mu) \rightarrow H^{i}(\mu ; \mathbb{Z} / 2) \forall M
$$

satisfying

1) $w_{i}\left(f^{*} E\right)=f^{*} w_{i}(E) \quad \forall f: M \rightarrow N$
2) $w_{0}(E)=1, w_{i}(E)=0 \quad \forall i>$ fiber dam E
3) $w\left(E_{1} \oplus E_{2}\right)=w\left(E_{1}\right) \cup w\left(E_{2}\right)$
where $w\left(E_{i}\right)=1+w_{1}\left(E_{i}\right)+w_{2}\left(E_{i}\right)+\ldots$
4) $\omega_{1}\left(\gamma_{n}\right) \neq 0$ where γ_{n} is the universal line bundle oven $\mathbb{R} P^{n}$
for 3) $E_{1} \oplus E_{2}$ is called the direct sum of E_{1} and E_{2} and has fiber the direct sum of the fibers of E_{1} and E_{2}
